close
The Real Fatou Conjecture. (AM-144), Volume 144 | Zookal Textbooks | Zookal Textbooks
  • Author(s) Jacek Graczyk; Grzegorz Swiatek
  • Edition
  • Published09082014
  • PublisherPrinceton University Press
  • ISBN9781400865185
In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.

The Real Fatou Conjecture. (AM-144), Volume 144

Format
Get it instantly

Zookal account needed

$102.44 $107.79 Save $5.35
Add Zookal Study FREE trial and save a further 0% 

NEW PRICE

$102.44 + free shipping

(0% off - save $0.00)

Zookal Study Free trial

-day FREE trial. $19.95/mo after. Cancel anytime.

*Discount will apply at checkout.

 See terms and conditions

You will get a further 0% off for this item ($102.44 after discount) because you have added Zookal Study Premium Free Trial to your bag.

For this discount to apply, you will need to complete checkout with the Zookal Study Premium Free Trial in your bag.

-
+
  • Author(s) Jacek Graczyk; Grzegorz Swiatek
  • Edition
  • Published09082014
  • PublisherPrinceton University Press
  • ISBN9781400865185
In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.
translation missing: en.general.search.loading