Pipelined Multiprocessor System-on-Chip for Multimedia
Haris Javaid; Sri Parameswaran
· ISBN 9783319011134
Special offer terms
Zookal Study Premium
Subscribe & save
By selecting the 'Susbcribe & Save' option you are enrolling in an auto-renewing subscription of Zookal Study Premium. Cancel at anytime.
Auto-Renewal
Your Zookal Study Premium subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $19.99 each month after 1st month free period until you cancel.
How to Cancel
You can cancel your subscription anytime by visiting Manage account page, clicking "Manage subscription" and completing the steps to cancel. Cancellations take effect at the end of the 1st month free period (if applicable) or at the end of the current billing cycle in which your request to cancel was received. Subscription fees are not refundable.
Zookal Study Premium Monthly Subscription Includes:
Ability to post up to five (5) questions per month.
0% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.com.au
Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.
Payment Methods
Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium subscription added to bag.
$1 preauthorisation
You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..
Email communications
By adding Zookal Study Premium, you agree to receive email communications from Zookal.
This book describes analytical models and estimation methods to enhance performance estimation of pipelined multiprocessor systems-on-chip (MPSoCs). A framework is introduced for both design-time and run-time optimizations. For design space exploration, several algorithms are presented to minimize the area footprint of a pipelined MPSoC under a latency or a throughput constraint. A novel adaptive pipelined MPSoC architecture is described, where idle processors are transitioned into low-power states at run-time to reduce energy consumption. Multi-mode pipelined MPSoCs are introduced, where multiple pipelined MPSoCs optimized separately are merged into a single pipelined MPSoC, enabling further reduction of the area footprint by sharing the processors and communication buffers. Readers will benefit from the authors’ combined use of analytical models, estimation methods and exploration algorithms and will be enabled to explore billions of design points in a few minutes.