close
Mathematical Programming | Zookal Textbooks | Zookal Textbooks
  • Author(s) T. C. Hu
  • Edition
  • Published05102014
  • PublisherElsevier S & T
  • ISBN9781483260792
Mathematical Programming provides information pertinent to the developments in mathematical programming. This book covers a variety of topics, including integer programming, dynamic programming, game theory, nonlinear programming, and combinatorial equivalence.
Organized into nine chapters, this book begins with an overview of optimization of very large-scale planning problems that can be achieved on significant problems. This text then introduces non-stationary policies and determines certain operating characteristics of the optimal policy for a very long planning horizon. Other chapters consider the perfect graph theorem by defining some well-known integer-valued functions of an arbitrary graph. This book discusses as well integer programming that deals with the class of mathematical programming problems in which some or all of the variables are required to be integers. The final chapter deals with the basic theorem of game theory.
This book is a valuable resource for readers who are interested in mathematical programming. Mathematicians will also find this book useful.

Mathematical Programming

Format
Get it instantly

Zookal account needed

$84.68 $89.10 Save $4.42
Add Zookal Study FREE trial and save a further 0% 

NEW PRICE

$84.68 + free shipping

(0% off - save $0.00)

Zookal Study Free trial

-day FREE trial. $14.95/mo after. Cancel anytime.

*Discount will apply at checkout.

 See terms and conditions

You will get a further 0% off for this item ($84.68 after discount) because you have added Zookal Study Premium Free Trial to your bag.

For this discount to apply, you will need to complete checkout with the Zookal Study Premium Free Trial in your bag.

-
+
  • Author(s) T. C. Hu
  • Edition
  • Published05102014
  • PublisherElsevier S & T
  • ISBN9781483260792
Mathematical Programming provides information pertinent to the developments in mathematical programming. This book covers a variety of topics, including integer programming, dynamic programming, game theory, nonlinear programming, and combinatorial equivalence.
Organized into nine chapters, this book begins with an overview of optimization of very large-scale planning problems that can be achieved on significant problems. This text then introduces non-stationary policies and determines certain operating characteristics of the optimal policy for a very long planning horizon. Other chapters consider the perfect graph theorem by defining some well-known integer-valued functions of an arbitrary graph. This book discusses as well integer programming that deals with the class of mathematical programming problems in which some or all of the variables are required to be integers. The final chapter deals with the basic theorem of game theory.
This book is a valuable resource for readers who are interested in mathematical programming. Mathematicians will also find this book useful.
translation missing: en.general.search.loading