Formoptimierung elastischer Bauteile mit gewichteten B-Splines
Florian Martin
· ISBN 9783658132941
Special offer terms
Zookal Study Premium
Subscribe & save
By selecting the 'Susbcribe & Save' option you are enrolling in an auto-renewing subscription of Zookal Study Premium. Cancel at anytime.
Auto-Renewal
Your Zookal Study Premium subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $19.99 each month after 1st month free period until you cancel.
How to Cancel
You can cancel your subscription anytime by visiting Manage account page, clicking "Manage subscription" and completing the steps to cancel. Cancellations take effect at the end of the 1st month free period (if applicable) or at the end of the current billing cycle in which your request to cancel was received. Subscription fees are not refundable.
Zookal Study Premium Monthly Subscription Includes:
Ability to post up to five (5) questions per month.
0% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.com.au
Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.
Payment Methods
Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium subscription added to bag.
$1 preauthorisation
You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..
Email communications
By adding Zookal Study Premium, you agree to receive email communications from Zookal.
Florian Martin verbindet verschiedene Verfahren mit einer auf gewichteten B-Splines basierenden Finite-Elemente-Methode, um die optimale Form eines elastischen Bauteils unter Krafteinwirkung zu ermitteln. Durch den Wegfall der Vernetzung und die hohe Genauigkeit und Glattheit der B-Splines werden bei der Variation des Gebietsrandes während der Optimierung massive Geschwindigkeitsvorteile erzielt. Darüber hinaus spielen B-Splines in vielen Bereichen der Naturwissenschaften und ihren zahlreichen Anwendungsgebieten, wie beispielsweise in der Computergrafik, eine fundamentale Rolle. Insbesondere bei Finite-Elemente-Verfahren bieten diese gegenüber klassischen Methoden zahlreiche Vorteile.