This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. The surface plasmon polaritons (SPPs) are then treated, highlighting their potential applications also in ultra-compact circuitry. The book concludes with a discussion of the quantization of evanescent waves and quantum information processing. The book is intended for students and researchers who wish to enter the field or to have some insight into the matter. It is not a textbook but simply an introduction to more complete and in-depth discussions. The field of plasmonics has exploded in the last ten years, and most of the material treated in this book is scattered in original or review papers. A short comprehensive treatment is missing; this book is intended to provide just that.
Evanescent Waves in Optics
Special offer terms
Zookal Study - 14-day Premium trial
Free trial
By clicking the checkbox "Add 14-day FREE trial" you are enrolling in a 2-week (14 day) free trial of Zookal Study Premium Plan, and if you do not cancel within those 14 days, you will be enrolled in an auto-renewing monthly subscription for Zookal Study Premium Plan at the end of the trial. Unused trial period benefits have no cash value, are not transferable, and expire at the end of the trial period.
Auto-Renewal
Following the expiration of any free trial period, your Zookal Study subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $14.95 each month after any free trial period until you cancel.
How to Cancel
You can cancel your subscription anytime by visiting "My Account" on homework.zookal.com, clicking "Cancel" and completing the steps to cancel. Cancellations take effect at the end of the free trial period (if applicable) or at the end of the billing month in which your request to cancel was received. Subscription fees are not refundable.
Zookal Study Premium Monthly Subscription Includes:
Ability to post up to twenty (20) questions per month.
0% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.com.au
Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.
Payment Methods
Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium Plan and/or Free Trial additions.
$1 preauthorisation
You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..
Email communications
By adding Zookal Study Premium or Premium Free Trial, you agree to receive email communications from Zookal.
This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. The surface plasmon polaritons (SPPs) are then treated, highlighting their potential applications also in ultra-compact circuitry. The book concludes with a discussion of the quantization of evanescent waves and quantum information processing. The book is intended for students and researchers who wish to enter the field or to have some insight into the matter. It is not a textbook but simply an introduction to more complete and in-depth discussions. The field of plasmonics has exploded in the last ten years, and most of the material treated in this book is scattered in original or review papers. A short comprehensive treatment is missing; this book is intended to provide just that.