By selecting the 'Susbcribe & Save' option you are enrolling in an auto-renewing subscription of Zookal Study Premium. Cancel at anytime.
Auto-Renewal
Your Zookal Study Premium subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $19.99 each month after 1st month free period until you cancel.
How to Cancel
You can cancel your subscription anytime by visiting Manage account page, clicking "Manage subscription" and completing the steps to cancel. Cancellations take effect at the end of the 1st month free period (if applicable) or at the end of the current billing cycle in which your request to cancel was received. Subscription fees are not refundable.
Zookal Study Premium Monthly Subscription Includes:
Ability to post up to five (5) questions per month.
0% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.com.au
Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.
Payment Methods
Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium subscription added to bag.
$1 preauthorisation
You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..
Email communications
By adding Zookal Study Premium, you agree to receive email communications from Zookal.
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.