Direct Methods for Limit and Shakedown Analysis of Structures
Paolo Fuschi
· ISBN 9783319129280
Special offer terms
Zookal Study Premium
Subscribe & save
By selecting the 'Susbcribe & Save' option you are enrolling in an auto-renewing subscription of Zookal Study Premium. Cancel at anytime.
Auto-Renewal
Your Zookal Study Premium subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $19.99 each month after 1st month free period until you cancel.
How to Cancel
You can cancel your subscription anytime by visiting Manage account page, clicking "Manage subscription" and completing the steps to cancel. Cancellations take effect at the end of the 1st month free period (if applicable) or at the end of the current billing cycle in which your request to cancel was received. Subscription fees are not refundable.
Zookal Study Premium Monthly Subscription Includes:
Ability to post up to five (5) questions per month.
0% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.com.au
Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.
Payment Methods
Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium subscription added to bag.
$1 preauthorisation
You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..
Email communications
By adding Zookal Study Premium, you agree to receive email communications from Zookal.
Articles in this book examine various materials and how to determine directly the limit state of a structure, in the sense of limit analysis and shakedown analysis. Apart from classical applications in mechanical and civil engineering contexts, the book reports on the emerging field of material design beyond the elastic limit, which has further industrial design and technological applications. Readers will discover that “Direct Methods” and the techniques presented here can in fact be used to numerically estimate the strength of structured materials such as composites or nano-materials, which represent fruitful fields of future applications. Leading researchers outline the latest computational tools and optimization techniques and explore the possibility of obtaining information on the limit state of a structure whose post-elastic loading path and constitutive behavior are not well defined or well known. Readers will discover how Direct Methods allow rapid and direct access to requested information in mathematically constructive manners without cumbersome step-by-step computation. Both researchers already interested or involved in the field and practical engineers who want to have a panorama of modern methods for structural safety assessment will find this book valuable. It provides the reader with the latest developments and a significant amount of references on the topic.