Cluster and Classification Techniques for the Biosciences
Alan H. Fielding
· ISBN 9780511258077
Special offer terms
Zookal Study Premium
Subscribe & save
By selecting the 'Susbcribe & Save' option you are enrolling in an auto-renewing subscription of Zookal Study Premium. Cancel at anytime.
Auto-Renewal
Your Zookal Study Premium subscription will be renewed each month until you cancel. You consent to Zookal automatically charging your payment method on file $19.99 each month after 1st month free period until you cancel.
How to Cancel
You can cancel your subscription anytime by visiting Manage account page, clicking "Manage subscription" and completing the steps to cancel. Cancellations take effect at the end of the 1st month free period (if applicable) or at the end of the current billing cycle in which your request to cancel was received. Subscription fees are not refundable.
Zookal Study Premium Monthly Subscription Includes:
Ability to post up to five (5) questions per month.
0% off your textbooks order and free standard shipping whenever you shop online at
textbooks.zookal.com.au
Unused monthly subscription benefits have no cash value, are not transferable, and expire at the end of each month. This means that subscription benefits do not roll over to or accumulate for use in subsequent months.
Payment Methods
Afterpay and Zip Pay will not be available for purchases with Zookal Study Premium subscription added to bag.
$1 preauthorisation
You may see a $1 preauthorisation by your bank which will disappear from your statement in a few business days..
Email communications
By adding Zookal Study Premium, you agree to receive email communications from Zookal.
Advances in experimental methods have resulted in the generation of enormous volumes of data across the life sciences. Hence clustering and classification techniques that were once predominantly the domain of ecologists are now being used more widely. This 2006 book provides an overview of these important data analysis methods, from long-established statistical methods to more recent machine learning techniques. It aims to provide a framework that will enable the reader to recognise the assumptions and constraints that are implicit in all such techniques. Important generic issues are discussed first and then the major families of algorithms are described. Throughout the focus is on explanation and understanding and readers are directed to other resources that provide additional mathematical rigour when it is required. Examples taken from across the whole of biology, including bioinformatics, are provided throughout the book to illustrate the key concepts and each technique's potential.